Regulation of Respiration

By

Dr. Sumaira Iqbal
Objectives

• By the end of the lecture students should be able to
 – Summarize nervous control of respiration
 – Explain the location and function of various respiratory centers
 – Explain Hering breuer reflex
 – Summarize the role of Chemical control in regulation of respiration.
Control of Respiration

• Nervous control
 – Respiratory centers/group of neurons
 – Their functions
 – Hering breuer reflex

• Chemical control
 – Central chemoreceptors
 – Peripheral chemoreceptors
Control Of Respiration

- Central controller
 - Brain stem (Pons, Medulla)
 - Cortex
 - Other parts of brain

1. Sensors
 - Chemoreceptors:
 - Central
 - Peripheral
 - Pulmonary receptors
 - Other receptors

2. Central controller

3. Effectors
 - Resp. Muscles
 - Diaphragm
 - Abd. Muscles
 - Accessory Muscles
Some stimulus disrupts homeostasis by increasing:

Arterial blood P_{CO_2} (or decreasing pH or P_{O_2})

Receptors

- **Central chemoreceptors in medulla**
- **Peripheral chemoreceptors in aortic and carotid bodies**

Control center

Inspiratory area in medulla oblongata

Output

Nerve impulses

Effectors

Diaphragm and other muscles of respiration contract more forcefully and more frequently (hyperventilation)

Return to homeostasis when response brings arterial blood P_{CO_2}, pH, and P_{O_2} back to normal.
Nervous Control

• Three major group of neurons
 – Medullary group
 • Dorsal respiratory group
 • Ventral respiratory group
 Both the above group are bilaterally paired and communicate with each other
 – Pontine group
 • Pneumotaxic center
 • Apneustic center
Dorsal Respiratory Group

• Located in
 – Nucleus of tractus solitarius (sensory termination of 9th and 10th cranial nerves)
 – Reticular formation

• Also known as inspiratory center

• Receives signal from peripheral chemoreceptors, baroreceptors and special lung receptors
Dorsal Respiratory Group

• Inspiratory neurons—discharge during inspiration & stop discharging during expiration (Respiratory Rhythm generator)

• Generate a Ramp Signal

• Initiate inspiration with a weak burst of action potentials—gradually increase in amplitude, & ceases for the next 3 sec until a new cycle begins

• Provides a gradual increase in lung volume during inspiration
Inspiratory Ramp

Two characteristics of inspiratory ramp

1. Control of the rate of increase of the ramp signal
 • During heavy respiration, the ramp increases rapidly and therefore fills the lungs rapidly

2. Control of the limiting point at which the ramp suddenly ceases
 • Limits the rate of respiration
Ventral Respiratory Group Of Neurons

- Situated in medulla oblongata anterior and lateral to the inspiratory center
- Formed by neurons of nucleus ambiguous and nucleus retro ambiguous
- Expiratory center
Ventral Respiratory Group Of Neurons

Function:
• Center is inactive during quiet breathing
• During forced breathing or when the inspiratory center is inhibited it becomes active
• Forced breathing signals are spilled to ventral group
Pneumotaxic center

• Situated in upper Pons
• Formed by nucleus parabrachialis

Function
• Controls medullary respiratory centers
• Switch-off the inspiratory center
• Limits the duration of inspiration
• Also increases the rate of breathing by shorten expiration as well (secondary)
Medullary Respiratory Neurons

Input & Output of DRG

Central chemoreceptors

Apneustic centre

Pneumotaxic centre

Peripheral chemoreceptors

Spinal motoneurons

Cervical (3,4,5) & Thoracic (1-12)
Apneustic center

• Situated in lower Pons
• Lower 1/3 close to medullary groups

Function:
• Center increases depth of inspiration by acting directly on the inspiratory center.
• Sends stimulatory discharge to inspiratory neurons promoting inspiration
• Removal of its stimulatory effect → respiration becomes shallow & irregular
How Pontine Respiratory Centres work to regulate rhythmic respiratory cycle?

- Active dorsal medullary inspiratory neurons → stimulatory discharge to muscles of inspiration
- Pneumotaxic centre → activated → inhibits apneustic & DRG → initiation of expiration
- Then, the spontaneous activity of inspiratory neurons starts another cycle
Hering Breuer reflex

- **Stimulus:** overstretching
- **Receptors:** stretch receptors
- **Afferents:** Vagii
- **Center:** Dorsal respiratory group
- **Efferents:** Vagii
- **Effectors:** muscles of expiration
- **Response:** limit the inspiration
 - Operates when tidal volume becomes 1.5L
Chemical Control of Respiration

Objective:
• To maintain proper concentration of O₂, CO₂ & H⁺ in the tissues.

Chemoreceptors:
• Central chemoreceptors (chemo sensitive area)
 – Direct chemical control of Resp. center activity
• Peripheral Chemoreceptors
 – Indirect chemical control of Resp. center activity
• Stimuli
Stimuli Affecting the Respiratory Center

Chemical control
• CO2 (via CSF and brain interstitial fluid H+ concentration)
• O2 (via carotid and aortic bodies)
• H+

Nonchemical control
• Vagal afferents from receptors in the airways and lungs
• Afferents from the pons, hypothalamus, and limbic system
• Afferents from proprioceptors
• Afferents from baroreceptors: arterial, atrial, ventricular, pulmonary
Chemosensitive Area of Resp. Centre

- Located bilaterally less than 0.2mm beneath the ventral surface of medulla.
- Highly sensitive to changes in blood PCO2 or H+ conc.
Stimulation of Chemosensitive Area

1. H+ ions:
 • Primary stimulus/direct stimulus for neurons of chemo sensitive area
 • Changes in H+ conc. In blood have less effect than changes in PCO2
 • H+--cannot cross blood Brain Barrier
 • Normal pH of CSF is 7.32 less buffering
 • Changes in pH of CSF for given change in PCO2 is greater than that in blood
Stimulation of Chemosensitive Area

2. CO₂:
Acute Effect:-

• stimulates chemo sensitive neurons indirectly
• Little direct effect
• CO₂ is lipid soluble cross BBB
• PCO₂ in blood immediately leads to increase PCO₂ in CSF & brain tissue
• CO₂ + H₂O → H₂CO₃ → H⁺ + HCO₃⁻
• H⁺ conc. promptly rises in CSF
Stimulation of Chemosensitive Area

Chronic Effect :

• Initial effect is massive
• Decreased stimulatory effect of CO2 after 1-2 days, due to :
 i. Renal adjustment of H+
 ii. Diffusion of HCO3 in brain
Stimulation of Chemosensitive Area

3. O₂

- Changes in oxygen concentration have no *direct* effect
- O₂Hb dissociation curve shows normal oxygen delivery between 60-500mmHg
- Peripheral chemoreceptors are activated when PO₂ falls below 70mmHg
Peripheral Chemoreceptors

Location: outside the brain;
1. In carotid bodies – Largest number
2. In aortic bodies – Sizable number
3. In other arteries of thorax
4. Few in abdominal region

Afferents via 9th & 10th CN to DRG
Peripheral Chemoreceptors

Sensitivity: Respond to:
- Decrease in arterial PO₂ (most responsive)
- Decrease in arterial pH
- Increase in arterial PCO₂

- Acts through carotid bodies
- Always exposed to high PO₂ due to high blood flow 20 times normal
- Decrease PO₂ causes rapid firing of impulses from carotid bodies
Peripheral Chemoreceptors

• \uparrowCO$_2$ and H+ ions excites chemoreceptors & indirectly increases respiratory activity
• Central effect of both these factors is more potent
• Peripheral effect is 5times more rapid
• Important in increasing the rapidity of response to carbon dioxide at the onset of exercise
Peripheral Chemoreceptors

Role of Art. PCO2/pH

• Indirect effect is less important i.e. increase PCO2 & decrease H+ conc.

• Stimulate central chemoreceptors directly.

• Direct effect is 7 times more powerful.

• Indirect effect is 5 times rapid.

• *In human carotid but not aortic bodies respond to fall in Art. pH.*
Stimulation of Peripheral Chemoreceptors

- Highly glandular cells—glomus cells directly synapse with nerve endings
- Glomus cells work as peripheral chemoreceptors
- Stimulate nerve endings
- O2 sensitive K+ channels inactivated when PO2 is less
- Cells depolarize
- Open calcium channels
- Intracellular Ca rises & stimulate neurotransmitter release
- Afferents send signals to CNS and stimulate respiration
Mechanism of Neurotransmitter Release by Glomus Cells

1. Low PO₂
2. K⁺ channels close
3. Cell depolarizes
4. Voltage-gated Ca²⁺ channel opens
5. Ca²⁺ entry
6. Exocytosis of dopamine-containing vesicles
7. Signal to medullary centers to increase ventilation
Effect of O_2 on Alveolar Ventilation

- Decrease in O_2 content of alveolar air increases respiratory minute volume
- Increase is slight when the pO$_2$ >60 mm Hg
- Marked increase when pO$_2$ <60 mm Hg
‘J’ Receptors of Lungs

- Located in juxtacapillary receptors present in wall of the alveoli
- Close contact with the pulmonary capillaries.
- Stimulated during conditions like pulmonary edema, pulmonary congestion, pneumonia, exposure of exogenous and endogenous chemicals like histamine, serotonin.
- Stimulation produces apnea.
Irritant Receptors Of Lungs

• Situated on the wall of bronchi and bronchioles of lungs
• Stimulated by harmful chemicals like ammonia & sulfur dioxide.
• Stimulation produces reflex hyperventilation & bronchospasm that prevents entry of harmful chemicals into the alveoli.
Brain Edema

- Respiratory center activity—depressed or inactivated by acute brain edema
- Reason: Brain concussion
- Head injury leads to swelling of damaged brain tissues—compress cerebral arteries blocks cerebral blood supply.
- Respiratory depression due to brain edema
- Relieved temporarily by i/v hypertonic solutions like mannitol
 - These solutions osmotically remove fluids of the brain, decreases intracranial pressure restores respiration
Anesthetics

• Most likely cause of respiratory depression & arrest is over dosage with anesthetics or narcotics
• Anesthetic agents causing respiratory depression
 – Sodium pentobarbital
 – Halothane
 – Morphine
CHYNE STOKES BREATHING

• Abnormality of respiration--periodic breathing
• Person breathes deeply for a short interval and then breathes slightly or not at all for an additional interval, in repeated cycle
• Cheyne-stokes breathing-- slowly waxing and waning respiration occurring every 40 to 60 seconds
Cause of Cheyne-Stokes Breathing

• When a person over breathes, too much carbon dioxide is blown off and increased oxygen in the pulmonary blood, as pulmonary blood reach the brain, inhibits the excess ventilation

• When over ventilated blood reaches the respiratory center, becomes depressed to an excessive amount

• Cessation of respiration leads to opposite effect i.e. carbon dioxide increases and oxygen decreases in the alveoli and stimulates the respiratory center

• Under normal condition this mechanism is damped

• In cardiac failure blood flow is slow transport of gases to brain is delayed, cheyne stokes breathing takes place.
CHEYNE – STOKES Breathing (*Periodic Breathing*)

Slowly waxing & waning respiration occurring over and over again approximately every 40 - 60 seconds.

Over Breathing $\rightarrow \downarrow$ PCO$_2$ & \uparrow PO$_2$ (In Pul. Blood)

\downarrow Inhibition of Brainstem

\downarrow Slowing of Breathing

\downarrow APNEA

\downarrow PO$_2$ & \uparrow CO$_2$

Cycle begins Again

![Diagram showing the depth of respiration and PCO$_2$ of respiratory neurons compared to PCO$_2$ of lung blood with the respiratory center excited or inhibited, illustrating the periodic breathing pattern.](image-url)
Sleep apnea

• Cessation of breathing during sleep
• Restless sleep and day drowsiness
• Loud snoring, apnea period, increased heart rate, pulmonary and systemic hypertension
• Two types
 1. Central Sleep apnea
 2. Obstructive sleep apnea
Central sleep apnea

• Causes
 – Central respiratory center damage
 – Respiratory muscle disorders
 – Stroke
 – Abnormalities of neuromuscular apparatus

• Treatment
 – Sedatives are helpful
 – Respiratory center stimulation
 – CPAP(continuous positive airway pressure)
Obstructive Sleep apnea

• Absence of spontaneous breathing

• Causes
 – Relaxation of respiratory muscles
 – Blockage of upper airway

• Loud snoring → followed by ↓PO2 & ↑PCO2 due to apnea → respiratory center stimulated → regain breathing
Obstructive Sleep apnea

• Common in obese individuals
 – Deposition of fat in soft tissue of pharynx and compress it

• Treatment
 – Remove the cause
 – CPAP(*continuous positive airway pressure*)
THANK YOU